Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 887: 164164, 2023 Aug 20.
Article in English | MEDLINE | ID: covidwho-2315235

ABSTRACT

During the COVID-19 pandemic, people used personal protective equipment (PPE) to lessen the spread of the virus. The release of microplastics (MPs) from discarded PPE is a new threat to the long-term health of the environment and poses challenges that are not yet clear. PPE-derived MPs have been found in multi-environmental compartments, e.g., water, sediments, air, and soil across the Bay of Bengal (BoB). As COVID-19 spreads, healthcare facilities use more plastic PPE, polluting aquatic ecosystems. Excessive PPE use releases MPs into the ecosystem, which aquatic organisms ingest, distressing the food chain and possibly causing ongoing health problems in humans. Thus, post-COVID-19 sustainability depends on proper intervention strategies for PPE waste, which have received scholarly interest. Although many studies have investigated PPE-induced MPs pollution in the BoB countries (e.g., India, Bangladesh, Sri Lanka, and Myanmar), the ecotoxicity impacts, intervention strategies, and future challenges of PPE-derived waste have largely gone unnoticed. Our study presents a critical literature review covering the ecotoxicity impacts, intervention strategies, and future challenges across the BoB countries (e.g., India (162,034.45 tons), Bangladesh (67,996 tons), Sri Lanka (35,707.95 tons), and Myanmar (22,593.5 tons). The ecotoxicity impacts of PPE-derived MPs on human health and other environmental compartments are critically addressed. The review's findings infer a gap in the 5R (Reduce, Reuse, Recycle, Redesign, and Restructure) Strategy's implementation in the BoB coastal regions, hindering the achievement of UN SDG-12. Despite widespread research advancements in the BoB, many questions about PPE-derived MPs pollution from the perspective of the COVID-19 era still need to be answered. In response to the post-COVID-19 environmental remediation concerns, this study highlights the present research gaps and suggests new research directions considering the current MPs' research advancements on COVID-related PPE waste. Finally, the review suggests a framework for proper intervention strategies for reducing and monitoring PPE-derived MPs pollution in the BoB countries.


Subject(s)
COVID-19 , Humans , Ecotoxicology , Ecosystem , Plastics/toxicity , Pandemics , Microplastics , Personal Protective Equipment
2.
Sci Total Environ ; 854: 158678, 2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2243397

ABSTRACT

Plastic pollution is one of the major environmental threats the world is facing nowadays, which was exacerbated during the COVID-19 pandemic. In particular, multiple reports of single-use plastics driven by the pandemic, namely personal protective equipment (PPE) (e.g., face masks and gloves), contaminating coastal areas have been published. However, most studies focused solely on counting and visually characterizing this type of litter. In the present study, we complement conventional reports by characterizing this type of litter through chemical-analytical techniques. Standardized sampling procedures were carried out in Kish Island, The Persian Gulf, resulting in an average density of 2.34 × 10-4 PPE/m2. Fourier transformed infrared spectroscopy confirmed the polymeric composition of weathered face masks and showed the occurrence of additional absorption bands associated with the photooxidation of the polymer backbone. On the other hand, the three layers of typical surgical face masks showed different non-woven structures, as well as signs of physical degradation (ruptures, cracks, rough surfaces), possibly leading to the release of microplastics. Furthermore, elemental mapping through energy-dispersive X-ray spectroscopy showed that the middle layer of the masks allocated more elements of external origin (e.g., Na, Cl, Ca, Mg) than the outer and inner layers. This is likely to the overall higher surface area of the middle layer. Furthermore, our evidence indicates that improperly disposed PPE is already having an impact on a number of organisms in the study area.

3.
Sci Total Environ ; 824: 153771, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1692896

ABSTRACT

The COVID-19 pandemic led to a still ongoing international health and sanity crisis. In the current scenario, the actions taken by the national authorities and the public prioritized measures to control the transmission of the virus, such as social distancing, and face mask-wearing. Unfortunately, due to the debilitated waste management systems and incorrect disposal of single-use face masks and other types of personal protective equipment (PPE), the occurrence of these types of items has led to the exacerbation of marine plastic pollution. Although various studies have focused on surveying marine coasts for PPE pollution, studies on inland water are largely lacking. In order to fill this knowledge gap, the present study assessed PPE pollution in the Iranian coast of the Caspian Sea, the largest enclosed inland water body in the world by following standard monitoring procedures. The results concerning the density (1.02 × 10-4 PPE/m2) composition (face masks represented 95.3% of all PPE) of PPE are comparable to previous studies in marine waters. However, a notable decrease in the occurrence of PPE was observed, probably to behavioral and seasonality reasons. The possible consequences of PPE pollution were discussed, although much more research is needed regarding the ecotoxicological aspects of secondary PPE contaminants, such as microplastics and chemical additives. It is expected that face mask mandates will be eventually halted, and PPE will stop being emitted to the environment. However, based on the lessons learned from the COVID-19 scenario, several recommendations for coastal solid waste management are provided. These are proposed to serve during and after the pandemic.


Subject(s)
COVID-19 , Personal Protective Equipment , COVID-19/epidemiology , Caspian Sea , Humans , Iran , Pandemics , Plastics , SARS-CoV-2 , Water
4.
Mar Pollut Bull ; 169: 112497, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1230652

ABSTRACT

The extensive use of personal protective equipment (PPE) driven by the COVID-19 pandemic has become an important contributor to marine plastic pollution. However, there are very few studies quantifying and characterizing this type of pollution in coastal areas. In the present study, we monitored the occurrence of PPE (face masks, bouffant caps, and gloves) discarded in 13 sites along Cox's Bazar beach, the longest naturally occurring beach in the world. The vast majority of the items were face masks (97.9%), and the mean PPE density across sites was 6.29 × 10-3 PPE m-2. The presence of illegal dumping sites was the main source of PPE, which was mainly located on touristic/recreational beaches. Fishing activity contributed to PPE pollution at a lower level. Poor solid waste management practices in Cox's Bazar demonstrated to be a major driver of PPE pollution. The potential solutions and sustainable alternatives were discussed.


Subject(s)
COVID-19 , Personal Protective Equipment , Humans , Pandemics , Plastics , SARS-CoV-2
5.
Sci Total Environ ; 774: 145774, 2021 Jun 20.
Article in English | MEDLINE | ID: covidwho-1078187

ABSTRACT

The use and disposal of face masks, gloves, face shields, and other types of personal protective equipment (PPE) have increased dramatically due to the ongoing COVID-19 pandemic. Many governments enforce the use of PPE as an efficient and inexpensive way to reduce the transmission of the virus. However, this may pose a new challenge to solid waste management and exacerbate plastic pollution. The aim of the present study was to report the occurrence and distribution of COVID-19-associated PPE along the coast of the overpopulated city of Lima, Peru, and determine the influence of the activities carried out in each study site. In general terms, 138 PPE items were found in 11 beaches during 12 sampling weeks. The density was in the range of 0 to 7.44 × 10-4 PPE m-2. Microplastic release, colonization of invasive species, and entanglement or ingestion by apex predators are some of the potential threats identified. Recreational beaches were the most polluted sites, followed by surfing, and fishing sites. This may be because recreational beaches are many times overcrowded by beachgoers. Additionally, most of the PPE was found to be discarded by beachgoers rather than washed ashore. The lack of environmental awareness, education, and coastal mismanagement may pose a threat to the marine environment through marine litter and plastic pollution. Significant efforts are required to shift towards a sustainable solid waste management. Novel alternatives involve redesigning masks based on degradable plastics and recycling PPE by obtaining liquid fuels through pyrolysis.


Subject(s)
COVID-19 , Personal Protective Equipment , Animals , Cities , Humans , Pandemics , Peru , Plastics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL